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CONSTITUTIVE MODEL FOR 1-D CYCLIC SOIL BEHAVIOUR APPLIED
TO SEISMIC ANALYSIS OF LAYERED DEPOSITS

Nikos GEROLYMOSY and GEORGE GAZETAS!)

ABSTRACT

A phenomenological constitutive model, ‘BWGG’, is developed for the non-linear one-dimensional ground
response analysis of layered sites. The model reproduces the nonlinear hysteretic behaviour of a variety of soils, and
possesses considerable flexibility to represent complex patterns of cyclic behaviour such as stiffness decay and loss of
strength due to build-up of pore-water pressure, cyclic mobility, and load induced anisotropy. It also has the ability of
simultaneously generating realistic modulus and damping versus strain curves, by a simple calibration of only three of
its parameters. The model is implemented through an explicit finite-difference algorithm into a computer code which
perform integration of the wave equations to obtain the nonlinear response of the soil. The code, ‘NL-DYAS’, is then
applied to study the seismic response of a soft marine normally-consolidated clay. The results are compared with those
of widely used codes. Finally, the records of the Port Island array during the Kobe 1995 earthquake, are utilized, and
the model is shown to ‘‘predict’’ the observed response with sufficient accuracy.

Key words: cyclic loading, damping, nonlinear ground response, Port Island array, shear modulus, soft clay seismic
response, soil model IGC: D7/E8/E13)

INTRODUCTION

Site response analysis is a very important issue in
earthquake engineering. It is usually the first step in the
calculation of structural response in soil-structure
interaction problems. Thus, a substantial effort has been
devoted in the last three decades in developing analytical
techniques and numerical methods for evaluating the
response of soil deposits to strong earthquake motions.
The majority of practical methods used for describing
nonlinear soil amplification are classified into two catego-
ries: (a) frequency domain equivalent linear and (b) time
domain nonlinear methods.

Although equivalent linear type of analyses are the
most popular, they have certain well-known limitations
under strong seismic shaking.

On the other hand, many of the commercially available
nonlinear models: (a) are incapable of simultaneously
fitting the observed shear modulus degradation and
damping curves, usually overestimating hysteretic damp-
ing at large strains (if the Masing rule for unloading-
reloading is used), and (b) are not versatile in properly
modeling the shape of various experimental stress-strain
loops for various types of soil behaviour. Clearly, the Fig. 1. Shear stress-strain loops for soil elements: Comparison of
Masing criterion is handly appropriate for cyclic soil experinilental an.d theoretical results with Masing rule for
behaviour, as demonstrated in the examples of Fig. 1. unloading-reloading

A phenomenological 1-D constitutive model, desig-
nated as BWGG model, is developed in this paper for the

Y Post Doctoral Researcher, National Technical University, Athens, Greece.

" Professor of Geotechnical Engineering, ditto (gazetas@compulink.gr).
The manuscript for this paper was received for review on March 24, 2004; approved on March 11, 2005.
Written discussions on this paper should be submitted before January 1, 2006 to the Japanese Geotechnical Society, 4-38-2, Sengoku, Bunkyo-
ku, Tokyo 112-0011, Japan. Upon request the closing date may be extended one month.

147

NACSI| S-El ectronic Library Service



Japanese Geotechnical Society
148 GEROLYMOS AND GAZETAS
T°f$,i°ggl1s7heaf test in which A4, b, g and »n are dimensionless quantities which
B"f%% 4/Cq control the shape of the stress-strain loop; y, is the value
r - . . .. . . . - .
04=96 kN/m? 06 of shear strain at ‘‘initiation of yielding”’ in the soil.
Fuji river sand 04} The model of (1) and (2) was originally proposed by Bouc

Fig. 2. Typical complicated nonlinear cyclic behavior of soil: (Top)
cyclic mobility of dense sand, (Bottom) Liquefaction of sand
(Ishihara, 1996)

static and dynamic response of soils. The model avoids
the aforementioned disadvantages and is quite versatile,
capable of reproducing even some of the most complex
nonlinear characteristics of cyclic behaviour, such as the
cyclic mobility and liquefaction response depicted in
Fig. 2. The model predictions can simultaneously match
any experimental modulus decline and damping growth
versus shear strain curve by properly adjusting only three
of its parameters. The other parameters do not affect the
match and can be set equal to their default values, or
simply eliminated from the model. Identification and/or
complete calibration of the model parameters is beyond
the scope of this paper. Nevertheless, a methodology for
relating the model parameters to the physical and
mechanical soil properties (from in-situ and/or laborato-
ry tests) is briefly discussed. An outline of the model is
given below.

THE MODEL: EQUATIONS AND PARAMETERS

The constitutive model proposed here in for modeling
the soil simple shear stress-strain relation of a soil
element is given by;

(1) =aGmaxy (D) + (1 = )7, (1) (D

where 7 and y are the shear stress and strain respectively,
Gax i the initial tangent shear modulus, « is a parameter
that controls the post yielding shear stiffness, 7, is the
value of shear stress at initiation of yielding in the soil.
The parameter {={(¢) is hysteretic dimensionless quanti-
ty that controls the nonlinear response of soil, and is
governed by the following differential equation;
d; 1

D @_ ﬂ n__ @ n—1
& yy(Adt b1 gldt‘lll c) @

(1971) and subsequently extended by Wen (1976) and
used in random vibration studies of inelastic systems.
The expressions given by (1) and (2) have been previously
used from Pires (1989) and Loh et al. (1995) for
probabilistic analysis of the seismic response of multi-
layered soil deposits.

By differentiating Eq. (1) with respect to the shear
strain y, one obtains;

dt dt
dfy = Oleax + (1 - O’.)Ty dy (3)
where
da 1 . dy
—=—JdA-[LI"|b+ —= 4
o e (Gl @
In monotonic loading conditions Eq. (2) collapses to;
d¢
d =A-(0b+g){" (5)
I
where
u=> ©)
Yy

is the strain ductility that the soil element experiences
during loading. It can be easily shown that when y tends
to 0, Eq. (6) reduces to;
ac
du
Substituting Eq. (7) to Eq. (3) and setting =0 yields

=A )

dr 1,

dy v
When A =1, Gnax(=1,/7,) becomes the small-amplitude
shear modulus, while o becomes the ratio of the post-to
pre-yielding stiffness.

From Eq. (1) it is obvious that the maximum value of
the shear stress, Tmax, is reached when y and { take their
maximum value. For monotonic loading the maximum
value of { is obtained by setting d¢/dy =0, and by virtue
of Eq. (3) this maximum takes the value;

1/n
Loan = (i) ©)

b+g
Substituting Eq. (9) to Eq. (1) and setting 7= Tma, =0,
and {={mn.« one obtains;

A 1/n
Tmax = Ty B-_I_—g

Note that the maximum shear stress becomes equal to 7,
when

(®)

(10)

A=b+g (11)

In undrained loading conditions, 7, is equal to the
undrained shear strength S,.

NACSI| S-El ectronic Library

Service



The

Japanese Geotechnical Society

CONSTITUTIVE MODEL FOR CYCLIC BEHAVIOUR

= 10

< 08 1

a 0.5

4

» 06 0.25

5

B 04 n=01

o

@«

L;l

=

5 ‘

z |
) — —

0 2 4 6 8

Normalized Shear Strain (y /v,)

Fig. 3. Normalized stress-strain curves to monotonic loading for
selected values of parameter #, computed from the proposed model
for soils
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Monotonic Loading Curve

The parameter n governs the sharpness of the transi-
tion from the linear to nonlinear range during initial
virgin loading. Its range of values is between 0 and <o,
with the 7—y curve approaching bilinear behaviour as n
approaches . However elastic-perfectly plastic behav-
iour is practically achieved when n takes values greater
than 10. The effect of parameter » on the monotonic
loading curve is portrayed in Fig. 3. As the values of n
decrease plastic straining appears even at low loading lev-
els. Monotonic loading curves for different values of the
post yielding parameter « and for constant value of n are
also presented in Fig. 4.

Loading-Unloading-Reloading Rule

Parameters b and g control the shape of the unloading-
reloading curve. As is shown in Fig. 5 there are four basic
hysteretic shapes, which depend on the relation between
b and g. As b tends to 1 and by virtue of b+g=1, the
reversal stiffness tends to 0. For the special case b=1 and

149
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Fig. 4. Normalized stress-strain curves to monotonic loading for
selected values of post-yielding parameter o and n=10.5, computed
from the proposed model for soils
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Hysteretic normalized stress-strain loops for different values of b and g, n=1: The Masing criterion for unloading-reloading is obtained for

g=0, the stress-strain loop collapses to the monotonic
loading curve (nonlinear elastic behaviour). On the
contrary as g reaches 1 under the condition of b+g=1,
the reversal stiffness becomes greater than the initial
stiffness (at virgin loading). Finally when b=g=0.5 the
reversal stiffness equals the initial stiffness and the Masing
criterion for loading-unloading-reloading arises.

Stiffness and Strength Degradation with Cyclic Loading
The model is capable of reproducing stiffness and
strength degrading behaviour. Stiffness decay is achieved
by introducing the parameter # in Eq. (2), giving;
I N ) B I [/
atl (A AT dt} 14 §) (12)
Prescribing # to be an increasing function of time will
induce stiffness decay. n can be expressed as a function of
the dissipated hysteretic energy and/or the cumulative
strain ductility. Note that decreasing # is equivalent to
reducing 4, b and g in proportion. The flexibility of
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Fig. 6. Stress-strain loops computed by BWGG model for soils, for selected values of s, together with the corresponding shear modulus and

damping curves (b=0, g=1and n=1)

the model in adjusting secant modulus reduction and
damping independently is extended by expressing # in the
following ductility-based form.

_sita(ut)+s,

13
S+ i (13)

, for wu>s;

and

’7:15 for ,ur<SZ (14)

where u; is a reference strain ductility defined in terms of
the shear strain at the most current stress reversal, and the
maximum attained shear strain before the start of the
current unloading or reloading cycle. The parameter s,
controls the reversal stiffness while the parameter s is a
characteristic value of strain ductility, y/y,, beyond of
which the stiffness degradation initiates.

Typical stress-strain loops for selected values of s; are
depicted in Fig. 6 together with the corresponding shear
modulus and damping versus strain curves. Increasing
values of s, leads to more rapid increase of damping for
strain amplitudes bigger than s,p,. It is worthy of note
that the greater the strain amplitude the less stiff is the
response at load reversal while the secant stiffness remains
constant. It is also shown from Fig. 6 that while the

damping curves cover a very broad range, all the shear
modulus curves fall within a very narrow zone, revealing
the independence between the two group of curves,
primarily thanks to the key parameter s,. Note that only
when s; tends to infinity, the damping tends to (the
unrealistically high) 2/ at large strains.

The proposed model is also versatile in simulating
strength degradation with cyclic loading. This can be
achieved in two different ways: (a) By making parameters
b and g increasing functions of hysteretic energy and/or
of cumulative strain ductility, while fulfilling the condi-
tion of equal reduction of » and g; (b) both strength and
stiffness degradation can be affected by incorporating the
parameter r in Eq. (1) giving;

()= | aGuuy(H)+ (1 —a)1, ()] (1-7) s)

Increasing r is equivalent to reducing parameter A4
without affecting b and g. Parameter r can be prescribed
as an increasing function of dissipated energy. The
dissipated energy has been widely used by many research-
ers as a measure of cyclic strength degradation and
subsequently of liquefaction resistance of saturated
grained soils. Relationships between excess pore pressure
and dissipated energy have been established from ex-
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Fig. 7. Normalized stress-strain loops for soil elements experiencing
stiffness and strength degradation with cyclic loading, computed by
BWGG model for soils: The loops are characteristic of sand
experiencing pore-water pressure build up: (a) before the initiation
of cyclic mobility and (b) during the phase of cyclic mobility

perimental data. By fitting these data, » can be expressed

where Au is the incremental pore pressure build up, g is
the initial vertical effective stress, Wy is a dimensionless
energy term (Law et al., 1990) and ¢ and £ are deter-
mined from laboratory tests. Parameter » can be adapted
to incorporate any pore pressure model (e.g. Ishihara and
Towhata, 1980; Finn et al., 1977). Figure 7 depicts stress-
strain loops for soil elements experiencing stiffness and
strength degradation with cyclic loading, computed with
the proposed model for soils. The loop of Fig. 7(a)
corresponds to values of b and g equal to 0.5, whereas
that of Fig. 7(b) to b= — 0.6 and g=0.4. The stress-strain
loops of Figs. 7(a) and 7(b) are characteristic of a sand
behaviour experiencing pore-water pressure build up,
just a little before the initiation and during the cyclic
mobility, respectively. To simulate the transition between
these two different phases of soil behaviour would require
calibration against laboratory data of parameter r, or
alternatively of parameters b and g, in time domain. For
example r should be an increasing function of time before
the initiation of cyclic mobility, experiencing fluctuations
with time (for simulating the strain hardening response).
Since identification and complete calibration of the
model parameters is beyond the scope of this paper, the
stress-strain loops in Fig. 7 shall be considered purely as a
demonstration of the potential capabilities of the
proposed model for soil.

To further extend the capabilities of the model in
simulating the cyclic response of soil elements undergoing
cyclic mobility, Eq. (12) is modified by introducing the
term;

as; 2

B 1 —_
Au PO)= exp{(—‘rf) } (17)

r="—=aW} (16) : !

Gvo leading to the following differential equation
dy  dy dy _
A"=b—{I"~¢g ~' 1gin'e
1

ac_ v de “dt © Tlati T 0 (18)

L, and ¢, are dimensionless parameters which control the
narrowing of the hysteretic loop around the center of the
stress-strain axis. {; is a constant that controls the shift of
the backbone curve on the ¢ axis. The influence of
parameter L, on the shape of stress-strain loop is illus-
trated in Fig. 8. Notice that the larger the L,, the more
pronounced the narrowing of the hysteretic loop around
the center of stress-strain axis.

The mechanical analog of Eq. (18) is that of two
springs placed in parallel. The first spring ‘‘constant”
represents the tangent shear stiffness of the soil and is
given by;

_acr

K,
dy

19)

with {* governed by Eq. (12). The modulus of the second
spring, P({), stands for improving the modelling of
dilative soil behaviour. To this end, Eq. (18) can be
rewritten in the equivalent form;

dc*
“_p

et o (20)
4y +P()

Figure 9 depicts a typical stress-strain loop computed
with the use of Eq. (18), corresponding to the cyclic be-
haviour of a dense sand undergoing cyclic mobility.

Asymmetric Response with Loading Direction
Finally, the non-symmetric cyclic response of soil with
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Fig. 8. Normalized stress-strain loops for selected values of parameter
L,, computed by BWGG model for soils (n=1, b= —0.6, g=0.4)
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Fig. 9. Typical stress-strain loop computed by BWGG model for soils,
corresponding to the cyclic behavior of a dense sand undergoing
cyclic mobility

respect to loading direction can be modeled by replacing {
in the numerator at the right-hand side of Eq. (2), with

¢
L=
d¢
1+ {osign (=
Co sig ( dt>
where {, is a constant that controls the shift of the
backbone curve on ¢ axis. Figure 10 illustrates the stress-

strain monotonic loading curves computed for selected
values of .

@21

SHEAR MODULUS REDUCTION AND DAMPING
CURVES

One of the major advantage of the proposed model for
soils is its ability to independently match the observed
shear modulus degradation and damping for any given
soil, by simply calibrating only three of its parameters, 7,
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Fig. 10. Normalized stress-strain curves to monotonic loading for
selected values of parameter {,, computed by BWGG model for
soils
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Fig. 11. BWGG Model prediction of Vucetic and Dobry experimental
curves

s; and s, (defined in the previous section). An optimiza-
tion procedure has also been developed to evaluate the
three parameters to fit the observed behaviour, the
presentation of which however is beyond the scope of this
article. As can be seen from the graphs in Fig. 11 the
model simulates the secant modulus and damping, in
accord with the measurements in Vucetic and Dobry
(1989).

DISCUSSION ON THE MODEL PARAMETERS

The proposed model is a system of equations capable
of reproducing the cyclic soil behaviour, when its
parameters are appropriately chosen. However, it does
not include any physically motivated stress-strain
relation. This means that identification and calibration of
the model parameters is a compulsory task. This could be
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done by utilizing data from:

*» laboratory tests such as cyclic triaxial and cyclic

simple shear

* in situ tests such as the standard penetration (SPT)

and the crosshole

* recorded free-field response

« centrifuge or large shaking table soil response.

To this end, nonlinear optimization techniques could be
used (such as time domain least square procedure, and
dynamic neural networks). For details about a compre-
hensive method for the identification of the Bouc-Wen
model parameters, the reader is referred to the work of
Sues, Mau, and Wen (1988). The development of a
complete methodology for the identification of the model
parameters is not in the scope of this paper. Nevertheless,
it is very important to mention that the model has a
powerful advantage: the number of the necessary
parameters for analysis purposes can be adapted to the
amount of the available geotechnical data. The other
parameters can be set equal to their default values or
simply eliminated from the model. The lesser the in situ
and/or laboratory data, the fewer the number of the
necessary-for the analysis parameters, but of course, the
larger the uncertainty in the model.

For example, supposing we have to conduct a site
response analysis and the only available information
about the soil are the shear wave velocity profile V;, the
soil classification, and the Atterberg limits, the following
steps shall be carried out for calibrating the model
parameters: (i) Calculate the small-amplitude shear
modulus G (il) Correlate the small-amplitude shear
modulus with the undrained shear strength (for clay)
and/or the relative density with the internal friction angle
(for sand). (iii) Set the yield shear stress 7, equal to the
shear strength of the soil. (iv) Calculate the yield shear
strain y,=17y/Guma. (v) Choose the appropriate shear
modulus reduction and damping curves from the litera-
ture, according to soil type, plasticity index, and effective
confining pressure. (vi) Calibrate the parameters n, s,
and s, for the calculated shear modulus and damping
curves to match the experiment. The other parameters of
the model are not needed since the geotechnical data are
not adequate for calibrating them. Therefore, they must
be set equal to their default values or even be eliminated
from the model. That is: set »=0.5, and eliminate o, r,
LS, C|, Cz, and C().

On the other hand, supposing that (except from the
aforementioned data) we have also in our disposal results
from cyclic undrained triaxial tests, then the proposed
methodology is further extended to incorporate addition-
al parameters to account for the effect of the pore-water
pressure build up on the stress-strain loop. As we have al-
ready mentioned in a previous section, this can be
achieved in two different ways: (i) by expressing
parameters b and g as a function of hysteretic energy
and/or of cumulative strain without affecting r, and (ii)
by prescribing r as a function of the effective confining
pressure, without affecting 4 and g. Reevaluation of the
strength parameter 7, could also be done, by using the

Fig. 12. Schematic illustration of the BWGG model for nonlinear
one-dimensional ground response analysis of layered sites

results of the triaxial tests which are more accurate than
those from the empirical correlations.

A question then arises about the role of the ‘pinching’
parameters L., {;, and {,, and the parameter for asym-
metric response with loading direction (,, in simulating
the shape of a stress-strain loop. These parameters aim
at further improving the capability of the model in
matching the measured soil behaviour. They are simply
curve-fitting parameters, not associated with the soil
properties. Besides, it is well-known that the larger the
number of parameters in a soil model, the more flexible it
becomes in reproducing the observed soil behaviour.

NUMERICAL MODELING OF ONE-DIMENSIONAL
WAVE PROPAGATION

The problem studied herein is that of a layered soil
profile subjected to seismic excitation. The one-dimen-
sional vertical shear wave propagation through a continu-
um is described by the differential equation;

a’u 9t d%u

p ST e
at- 9z  0z°0¢
where z is depth from surface, ¢ is time, u is soil displace-
ment, 7 is soil shear stress, p is soil density, and c is
viscoelastic constant. The boundary conditions at the

base (rock outcrop motion) and at the top of the soil
profile are, respectively;

(22)

8%u du(0, 1) duy(1)
Htel =pV, - 2
007 P [ it ar @)
and
H
A0 _, (24)
dz

where p, and V, the density and shear wave velocity
respectively of the rock, H is the thickness of the soil
deposit, and u,=u,(¢) the displacement history of the
input ‘‘rock outcrop’’ motion.

The proposed model is schematically illustrated in
Fig. 12. An explicit finite difference technique is used for
the solution of the field Eq. (22) which is coupled with
the constitutive Eqgs. (15) and (18), and the boundary
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Fig. 13. The soil profile and available geotechnical for our example:

The shear modulus is taken as proportional to S, and hence
proportional to depth

Eqgs. (23) and (24). We have incorporated the BWGG
model into a computer algorithm named NL-DYAS for
the nonlinear one-dimensional ground response analysis
of layered sites (Gerolymos, 2002).

NONLINEAR SEISMIC RESPONSE ANALYSIS OF A
LAYERED SITE-COMPARISON WITH OTHER
METHODS

For a first evaluation of the model, a soil amplification
analysis is performed for a comparison with codes widely
used in geotechnical engineering. More specifically, the
seismic response of a representative soil profile of the
St. Stefanos bay area in Halkida (Greece), is studied. The
soil profile and available geotechnical data are given in
Fig. 13. The profile consists of about 18 m soft normally
consolidated clay which is underlain by about 16 m thick
of stiff overconsolidated clay over-weathered limestone
encountered at —34 m. The profile is analysed using: (a)
the outlined BWGG model implemented in NL-DYAS,
(b) the equivalent linear method (SHAKE-Schnabel
et al., 1972), and (c) the hyperbolic model in conjunction
with an expanded Masing rule for unloading and reload-
ing (DESRA-Lee et al., 1978). The idealized shear wave
velocity and undrained shear strength used in our anal-
yses is illustrated in Fig. 14. The calibration of the model
parameters was based on the optimum fit of the published
experimental shear modulus reduction and damping
curves, using the methodology developed in a previous
section. Specifically, the values of the parameters used in
the analysis are: n=0.6, b=0.5, 5;,=1.2, and s5,=0.25.
The other parameters are eliminated from the model.
The profile was subjected to a seismic accelerogram
(Sepolia record) from the Athens 1999 Earthquake (M, =
5.9, A =10 km), which had a peak ground acceleration of
0.42 g, in order to examine the modeling ability at large

GEROLYMOS AND GAZETAS
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Fig. 14. The idealized shear wave velocity and undrained shear
strength profiles used in our analyses
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Fig. 15. The seismic excitation (Sepolia Record, Athens 1999 earth-
quake) and acceleration time histories at the ground surface
computed with three models for the soil profile of Fig. 14

strains. The results of the analyses for the three soil
models are compared in Figs. 15-17. The following
remarks are worthy of note:

(a) Whereas the equivalent-linear SHAKE analysis
predicts pga=0.58 g, the nonlinear inelastic analyses
(NL-DYAS and DESRA) predict 0.32g and 0.19g,
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Fig. 16. Comparison of maximum shear strains and acceleration
distributions computed with the three models for the soil profile of
our example
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Fig. 17. Comparison of acceleration response spectra at ground
surface computed with the three models for the soil profile of our
example

respectively. This reveals that significant errors could
emerge when ignoring the true nature of soil nonlinearity.

(b) The hyperbolic model in conjunction with the
Masing rule for unloading-reloading imposes a systemat-
ic cutting-off the acceleration peaks. The value of the
limiting acceleration, 0.19 g , is a function of both the
minimum value of S, at the surface, S.(0) and the rate of
increase of S, with depth, dS./dz. Of course, no such
cutting-off exists in the equivalent linear analysis. On the
other hand, the BWGG model restrains the acceleration
peaks but without completely cutting them off at a
constant value. This intermediate behaviour stems par-
tially from the hardering parameter c. It is believed to be
in closer agreement with reality.

(c) A substantial difference exists between the shear
strain amplitudes computed with the equivalent linear
and the two nonlinear methods. At a depth of about 4 m
we compute max y=1.2% with the SHAKE analysis,
while max y = 0.25% according to both DESRA and NL-
DYAS. It is precisely this large strain value which in
SHAKE leads to the doubling of acceleration: from the
value max A=~0.30g at z=4 m to the value max A=
0.58 g at z=0m—a phenomenon reminiscent of the
“whip-lash”’ effect in flexible systems vibrating in a
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Location of the Port Island array

higher mode (Travasarou and Gazetas, 2003).

(d) The frequency content of the surface motions, as
seen in the acceleration histories, and their response
spectra, is rather sensitive to the soil model used in the
analysis. Indeed, the equivalent linear analysis filters
substantially the high-frequency components of the
excitation, such as those in the time internal 4.5-6.0 sec.
This happens for two reasons: (i) throughout shaking the
material damping ratio in the equivalent-linear analysis
remains constantly 18% near the ground surface, and (ii)
also throughout shaking, the effective stiffness remains
constantly low at about 20% of the original Gu.x (at
Yer~(2/3) max y=0.8%). Apparently spuriously high
damping and low stiffness are the result of the preceding
highest amplitude of acceleration at f=4 sec, which
controls the equivalent linear response. The two effects
combined give the observed artificial filtering of the high
frequency components associated with small amplitude
oscillations. In contrast, the hyperbolic-Masing model
filters (perhaps excessively) the low-frequency high-
amplitude components, due to the aforementioned
cutting-off process. BWGG captures more accurately
than the above two models both the high and low ampli-
tude periods of shaking, as will be further proven in the
following case history.

SEISMIC RESPONSE OF PORT ISLAND IN THE
1995 KOBE EARTHQUAKE: ANALYSIS AND
RECORDS

The BWGG model for soils is further used to analyse
the seismic response in Kobe’s Port Island at the in-depth
seismographic array where surface and downhole instru-
ments (at —16 m, —32 m, and — 82 m) have recorded the
shaking during the Great Hanshin (Kobe) Earthquake
(1995). These records are the benchmark against which
any new method must be tested.

Site Conditions and Seismic Records

A downhole accelerometer array was situated at the
north-west corner of Port Island (Fig. 18). The array
consisted of triaxial accelerometers located at the three
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granular fill layer, underlain by an alluvial clay layer
between 19m and 27 m depth, followed by sandy-
gravelly strata interlayered with clay down to 61 m depth.
Below is a diluvial clay layer from 61 m to 82 m depth,
and a gravelly sand layer starting at 82 m depth. The
water table is located at 4m depth approximately.
Figure 19 (after Iwasaki, 1995) shows the soil profile
together with the Standard Penetration Test (SPT) N
values and the shear wave velocity distributions. The low
SPT values in the granular fill justify the high excess pore
pressures/liquefaction that took place in this layer. The
N44W components of the recorded downhole accelera-
tions are presented in Fig. 20 (after Iwasaki, 1995).

Previous Numerical Simulations of the Seismic Response
of the Site

According to Yamazaki et al. (1995) who computed the
seismic response of the site, liquefaction may have had
occurred in more than one layer at different times. First at
27 m to 33 m depth, and then in the loose layer at 10 m to
16 m depth. Elgamal et al. (1995) who also carried out
soil amplification analysis of the site, showed that below
32 m depth the soil response was essentially linear with no
appreciable reduction in stiffness. On the other hand, at
shallow depths a reduction in soil stiffness with a slight
shear strain hardening at elevation 24 m, and an abrupt
sharp loss of stiffness accompanied by reduction of yield
strength at 8 m depth, was predicted.

Site Response Analysis
The profile is analysed using: (a) the BWGG model
implemented in NL-DYAS, and (b) the hyperbolic model

Japanese Geotechnical Society
156 GEROLYMOS AND GAZETAS
N- value Shear Wave Velocity (m/s) 0.5
0 10 20 30 40 50 60 ¢ 200 400 ”_D
0 Oom T T +
Deco_mposed 0 m
Granite fill 0.0
10+
Sand &
Gravel '16’"- [
1 Alluvial 05 ' 035r : ’ ]
Cay 0 5 10 15 20
Pt 05
"_'.: ia(?l(;y -3zm . -} 16 m
E 2 sanaa
£ Gravel 0.0 1
a
3 —_
Sand & Q
Clay S 0.5 T T T T 1
S 0 5 10 15 20
o 05
Diluvial - % ]
Clay
é(tg -32m
r 0.0 1
Sand & -83'“. 1
| Gravel
'0-5 T T T T 1
Fig. 19. Soil Profile, SPT and shear wave velocities distributions at the 0 5 10 15 20
Port Island site (after Iwasaki, 1995) 0.5 1
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mentioned depths and at the surface. Due to a detailed 0.01
geotechnical investigation of the array site, performed
before and after the earthquake, the soil profile is known 05 : — .
with sufficient accuracy (as is summarized in Fig. 19). The 0 5 10 15 20
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Fig. 20. N44W accelerations at ground surface and downhole stations
(at 16 m, 32 m and 83 m depths, after Iwasaki, 1995)

in conjunction with Masing rule for unloading and
reloading (DESRA). Although the proposed model is
capable of reproducing cyclic liquefaction response, the
calibration of the model parameters was based exclusive-
ly on the best fit to the experimental shear modulus and
damping curves (Kokusho et al., 1996). Stiffness and
strength degradation due to pore-pressure rise was not
taken into account. Specifically, the values of the
parameters used in the analysis are: For the sand and
gravel layers, n=1.2, b=0.5, s;=1.1, 5,=0.15, and
«=0.035. For the clay layers, n=0.6, b=0.5, s;=1.2,
5,=0.25, and &=0.035. The other parameters are simply
eliminated from the model. The N44W earthquake
record at 83 m depth (Fig. 20) was used as input excita-
tion of the soil profile.

Figures 21 and 22 show comparison between recorded
and calculated motions at the ground surface for both the
BWGG model (NL-DYAS) and the hyperbolic plus
Masing (DESRA). Stress-strain loops computed by the
two models at depths of 20 m and 32 m respectively are
also compared in Fig. 23.

The agreement for the proposed model with the record
appears to be excellent in the region of the first 6 sec (i.e.,
before liquefaction has apparently occurred). This is also
reflected in the comparison of Fig. 24 in which the
predicted spectrum values corresponding to the first 6 sec
of the seismic motion, match the recorded spectrum with
very good accuracy. As expected, the post-liquefaction

NACSI| S-El ectronic Library

Service



The

Japanes

Acceleration (m /57)

Fig. 21.

e

Geotechnical Society

CONSTITUTIVE MODEL FOR CYCLIC BEHAVIOUR 157
4 -
—recorded — ——recorded
-~ model i ~ Nﬂ - - model
E
23
s
fc
QL
8
2

time (s)

Comparisons between the recorded accelerogram and the
acceleration history computed with BWGG model (dotted line) for
the surface

Shear Stress (kPa)
o

&
<3

-120

120

604 -2

Shear Stress (kPa)
o
1
1
1
1
:
I
TTTT T T T
1
1
1
1
1
1
i
t
I
]
|
|
[l
|

'

1

| |
-120 + }
-2 -1 0 1

Shear Strain (%)

Fig. 22. Comparisons between the recorded accelerogram and the
acceleration history computed with hyperbolic model (dotted line)
for the surface
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Fig. 23. Shear stress-strain loops computed by the two models at selected depths: (Left) The BWGG model, (Right) The hyperbolic model with the
Masing rule for unloading-reloading

Fig. 24.
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Comparison between the response spectrum of the first 6 sec
of the recorded accelerogram at the ground surface, and the spectra
of the first 6 sec of motion computed with the two nonlinear
models (BWGG and hyperbolic + Masing)
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Fig. 25. Comparison between the response spectrum of the complete
time history of the recorded accelerogram at the ground surface,
and the spectra of the complete time history computed with the two
nonlinear models (BWGG and hyperbolic + Masing)
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Fig. 26. Distribution of the maximum accelerations computed by the
BWGG model (solid line) and the hyperbolic-plus-Masing model
(gray line), together with the recorded values (circles)

response acceleration (after the 6 sec) is overestimated by
the BWGG model. This is because no pore water pressure
build-up was considered in the calibration of the model
parameters.

Comparison between the spectral accelerations of the
complete record at the ground surface and those
computed by the BWGG model for the whole duration of
motion is shown in Fig. 25. The agreement is satisfactory
except for periods around 2 sec for which the response is
overpredicted for the aforementioned reason. Figure 26
compares the distribution of maximum accelerations
computed by the BWGG model and the hyperbolic-plus-
Masing model, together with the recorded values. The
agreement for the BWGG model is indeed good, and far
better than that of the hyperbolic-plus-Masing model.
The latter leads to a systematic cutting-off the accelera-
tion time history at ground surface, even before the
initiation of liquefaction (Fig. 22). This is mainly for the
two aforementioned reasons: (a) the overestimation of
the material damping at large strains, and (b) the zero
post-yield hardening characterizing the model. These
weaknesses of the hyperbolic-plus-Masing model in
simulating cyclic behaviour, are shown in the stress-strain
loops, at depths of 20 m and 32 m respectively, plotted in
Fig. 23. The inability of the hyperbolic-plus-Masing
model to capture the actual response is also evident in
Figs. 24 and 25 where the computed spectral accelerations
for periods between 1 and 3 seconds, are about two times
lower than the recorded.

CONCLUSIONS

A phenomenological constitutive model, BWGG, is
developed in this article for static and dynamic response
of soil elements. The model is incorporated into a novel
algorithm named NL-DYAS for the nonlinear inelastic
one-dimensional ground response analysis of layered

sites. It is shown that the model is very versatile in
representing complex nonlinear characteristics of the
cyclic behaviour of soil elements, such as stiffness decay
with strain amplitude, loss of strength due to pore-water
pressure development, cyclic mobility, and non-symmet-
ric behaviour with loading direction. The proposed
model has the ability to independently match experimen-
tal shear modulus and damping curves, by properly
adjusting only three of its parameters. The NL-DYAS
code was utilized to simulate the cyclic behaviour of a
layered site subjected to seismic excitation. The results
are compared with predictions of widely available and
extensively used methods of analysis, such as the
equivalent-linear and the hyperbolic nonlinear model.
The comparison reveals the weakness of the aforemen-
tioned methods of analysis to simulate realistically the
nonlinear cyclic behaviour of a soil deposit, at large strain
levels. To provide some verification of the model, the
records of the Port Island array during the Kobe 1995
earthquake were utilized. The model was shown to
“predict’’ the observed response with sufficient accuracy.
The hyperbolic model in conjunction with the Masing
rules for unloading-reloading was also used for soil am-
plification analysis but was shown to be less successful in
reproducing the reality.
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